
Data Location Interface

for the Workload Management System - v0.3

Heinz Stockinger, Flavia Donno

August 25, 2004

Abstract

The Matchmaker of the Workload Management Systems (WMS) takes
care of finding a suitable computing resource (i.e. Computing Element)
to execute a data intensive job. The location of the required input data is
one of the most important input parameters for the matchmaking process.
Therefore, the Matchmaker requires a uniform query interface to locate
data stored in Storage Elements. The following document describes the
basic Data Location Interface as well as some required changes to the
Workload Management System.

1 Introduction

In the current version of the Workload Management System in LCG 2.x [1], the
Matchmaker uses file locations as the base for determining where input data
is located. Currently, the Replica Location Service (RLS) is queried via the
replica manager method listReplicas:

std::vector<std::string> listReplica(const std::string& lfn);

Based on feedback from several application users, the following new require-
ments needs to be addressed:

• Datasets rather than logical files: Many application users have ex-
pressed the requirement that they want to deal with sets of files (collec-
tions or datasets) rather than single files addressed by Logical File Names.
Therefore, the concept of a Logical Data Set (LDS) is required. In
addition, it is assumed that experiment specific dataset catalogues are
provided by VOs (e.g. physics experiments). Such catalogues describe
dataset characteristics and allow for locating of replicas of datasets.

• Allow for a generic query string: Once a dataset catalogue is in
place, application users typically express their input data requirements in
an experiment specific way to query data sets. The query is then resolved
by the dataset catalogue which returns locations of the requested datasets.

1



• Unique query interface to data catalogues: The RLS provided by
the EDG project is a candidate file replica catalogue. However, there are
currently several other ongoing projects that are building replica catalogue
systems. In order to shield the WMS from several different implementa-
tions, a unique, standardised query interface to such catalogues is required.

In order to satisfy these requirements, we consider both types of catalogues
(dataset catalogues and file replica catalogues) as data catalogues which need
to provide

• the same standard interface,

• the same agreed protocol

in order to be used by the Matchmaker. We refer to this as the Data
Location Interface and give specific details in Section 2. The consequences
for the Workload Management System and possible extensions to the JDL (Job
Description Language) are then discussed in Section 3.

2 Data Location Interface

The Matchmaker only requires a basic query (search) interface in order to obtain
the location of required input data. Therefore, the proposed interface is limited
to very specialised queries. The interface does not include general catalogue
commands such as insert and delete operations.

In general, the Data Location Interface needs to allow for the following types
of InputData variables:

• File - Logical File Name (LFN) or Global Unique IDentifier (GUID)

• Dataset - Logical DataSet (LDS)

• Query - Generic query

In order to distinguish the four different data types, the listReplicas method
is required for each of them (indicated by the postfix “byLfn”, “byLds” etc).
The basic query interface is as follows:

std::vector<std::string> listReplicasByLfn (std::string inputData)

std::vector<std::string> listReplicasByGuid (std::string inputData)

std::vector<std::string> listReplicasByLds (std::string inputData)

std::vector<std::string> listReplicasByQuery (std::string inputData)

Input Parameter: The input parameter corresponds to the InputData type
indicated by the postfix “byLds” etc. It should be well formed but it is up to
the catalogue implementation to do necessary syntax checks. In this way, we
allow for a most flexible, general interface.

2



Return value: The method returns a list of URLs referring to the data loca-
tion. Each URL includes a Storage Element (DNS hostname) the corresponding
access protocol. If no URL is found for the given InputData, NULL is returned
and a NoURLFound exception is thrown. For datasets, the URL of a single file
in the dataset is sufficient, assuming that all other files within the dataset are
located at the same Storage Element and accessible via the same protocol.

Exceptions/SOAP Faults:

• InputDataException - in case the specified InputData does not exist.

• NoURLFoundException - in case for the given InputData, no URL is
found.

• CatalogException - in case of a generic catalogue error.

Example of query output:

srm://example.org/data/file1

http://example.org/dirctory/dataset

Note that “example.org” corresponds to a valid SEid (i.e. the DNS hostname
of a valid Storage Element) that is registered with the information system.
Therefore, all returned URLs must follow these conventions.

An alternative interface is to request a set of input data items and then
return InputData/URL pairs similar as defined in [2]:

stringPair<std::string, std::string>

listReplicasByLfn(vector<std::string> inputData)

stringPair<std::string, std::string>

listReplicasByGuid(vector<std::string> inputData)

stringPair<std::string, std::string>

listReplicasByLds(vector<std::string> inputData)

stringPair<std::string, std::string>

listReplicasByQuery(vector<std::string> inputData)

A generic data type for stringPair still needs to be defined.

Note

Although we propose the same interface for both replica and dataset catalogues,
the following assumptions are valid:

• A replica catalogue (providing LFN-PFN mapping) does not need to im-
plement LDS based queries nor need to understand the concept of LDS.

3



• A dataset catalogue (providing a LDS-Location mapping) does not need to
implement LFN(GUID) based queries not need to understand the concept
of LFN(GUID).

In this way, different catalogue types can be used.

2.1 Protocol

Since SOAP is currently one of the most commonly used protocols in the in-
ternational Grid community, we propose to use SOAP as the request-response
protocol between the Matchmaker (client) and a Data Catalogue.

A WSDL description of the interface described above will be provided in the
next version of this document.

2.2 Security

A secure connection between the requesting client and the Data Catalogue is
required. We assume that a standard security interface provided by EGEE (or
another project) can be used for that purpose.

2.3 Optimisation Interface

The original replica management interface available in the latest EDG release
2.1 provided the following method for optimised data access:

getAccessCost(const std::vector<std::string>& lfns,

const std::vector<std::string>& ces,

const std::vector<std::string>& protocols)

Since in LCG-2 the Replica Optimization Service is not used, the method
does not return the correct values. Therefore, we currently assume that the
following method does not need to be implemented by the Data Catalogue
Interface unless an optimisation service is in place.

2.4 Dataset Issues

In order to make efficient use of a dataset (collection), all files for a given dataset
need to be in a single location, i.e a single Storage Element. For now we assume
that whenever a dataset catalogue returns the URL of a dataset, all files need
to be located at the given URL (i.e. in the Storage Element referred to by the
URL). This is an important limitation but we consider this as the best starting
point.

In the future, more enhanced issues such as dealing with partial datasets
need to be addressed.

The dataset catalogue should also have be able to use smome kind of valida-
tion mechanism to determine if datasets are fully available at a Storage Element.
This is an important issue since the Matchmaker bases its scheduling decission
on this assumption.

4



3 Workload Management System Changes

In order to allow for a generic Data Location Interface, some changes in the
Workload Management System are required. Since the Matchmaker is now
extended to contact a generic Data Catalogue, an additional JDL field is re-
quired that indicates the URL of a “non-standard”, application specific Data
Catalogue.

For backward compatibility, the default catalogue for a particular VO is
obtained from the information services. For example, one VO might decide to
use RLS as the default catalogue whereas another one might chose to use a
dataset catalogue. If a different, non-default catalogue is used by specifying
the DataCatalog variable, the Matchmaker uses that catalogue rather than the
default.

In addition, the four InputData types LFN, GUID, LDS and Query need to
be supported. Each of them has a the respective prefix as indicated in the

• lfn:validLfnString

• guid:validGuidString

• lds:validDatasetString

• query:validQueryString

JDL example for using an experiment specific dataset catalogue with an LDS
as InputData:

[

DataCatalog = {"http://example.org/CMSDataSetCatalog"};

InputData = {"lds:mu03_tt_4mu/mu_Hit245_2_g133"};

]

In the example above, the CMS physicist specifies that she needs a certain
dataset as InputData. The catalogue specified by DataCatalog is the CMS
dataset catalogue that provides the interface described in Section 2.

Internal Details

Although the application user has to indicate the requested InputData type
by using the a prefix, the Workload Management System internally calls the
respective Data Location Interface method.

For discussion: we foresee to provide a plug-in interface for the Match-
maker that allows for the following two options:

• Call the new Data Location Interface that in turn contacts a data cata-
logue via SOAP.

• Use the current interface to RLS for backward compatibility.

5



4 Conclusion

The proposed Data Location Interface is the essential for the Matchmaker to
contact a Data Catalogue. We propose that upcoming file, replica or dataset
catalogues provide this interface in order to be used effectively by the Match-
maker.

References

[1] Workload Management System (WMS) in EDG and LCG-2:
http://server11.infn.it/workload-grid/

[2] EGEE Design Team, EGEE Middleware Design - Draft, EGEE DJRA1.2-
487871.-v0.4, 18 August 2004.

6


